Classification of Radar Targets with Micro-Motion Based on RCS Sequences Encoding and Convolutional Neural Network

نویسندگان

چکیده

Radar cross section (RCS) sequences, an easy-to-obtain target feature with small data volume, play a significant role in radar classification. However, classification based on RCS sequences has the shortcomings of limited information and low recognition accuracy. In order to overcome RCS-based methods, this paper proposes spatial micro-motion method encoding convolutional neural network (CNN). First, we establish models targets, including precession, swing rolling. Second, introduce three approaches for as images. These types images are Gramian angular field (GAF), Markov transition (MTF) recurrence plot (RP). Third, multi-scale CNN is developed classify those maps. Finally, experimental results demonstrate that RP best at reflecting characteristics among methods. Moreover, proposed outperforms other existing networks highest

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Convolutional Neural Network Based Chart Image Classification

Charts are frequently embedded objects in digital documents and are used to convey a clear analysis of research results or commercial data trends. These charts are created through different means and may be represented by a variety of patterns such as column charts, line charts and pie charts. Chart recognition is as important as text recognition to automatically comprehend the knowledge within...

متن کامل

A Position Encoding Convolutional Neural Network Based on Dependency Tree for Relation Classification

With the renaissance of neural network in recent years, relation classification has again become a research hotspot in natural language processing, and leveraging parse trees is a common and effective method of tackling this problem. In this work, we offer a new perspective on utilizing syntactic information of dependency parse tree and present a position encoding convolutional neural network (...

متن کامل

Classification of Moving Vehicles Based on Convolutional Neural Network

This paper suggests a method of applying convolutional neural network (CNN) to realtime moving-vehicle image dataset, and experiments its performances. Compared to Support vector machine (SVM), the CNN led to a 13.59% increase in performance.

متن کامل

Some Improvements on Deep Convolutional Neural Network Based Image Classification

We investigate multiple techniques to improve upon the current state of the art deep convolutional neural network based image classification pipeline. The techniques include adding more image transformations to the training data, adding more transformations to generate additional predictions at test time and using complementary models applied to higher resolution images. This paper summarizes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14225863